The Dunkl weight function for rational Cherednik algebras
نویسندگان
چکیده
منابع مشابه
The Dunkl Weight Function for Rational Cherednik Algebras
In this paper we prove the existence of the Dunkl weight function Kc,λ for any irreducible representation λ of any finite Coxeter group W , generalizing previous results of Dunkl. In particular, Kc,λ is a family of tempered distributions on the real reflection representation of W taking values in EndC(λ), with holomorphic dependence on the complex multi-parameter c. When the parameter c is real...
متن کاملThe Dunkl Weight Function for Representations of Rational Cherednik Algebras
1. Signature Characters and the Jantzen Filtration 1 1.1. Jantzen Filtrations on Standard Modules 1 1.2. Hermitian Duals 3 1.3. Rationality of Signature Characters 5 1.4. Asymptotic Signatures 7 1.5. Isotypic Signature Characters 8 2. The Dunkl Weight Function 10 2.1. The Gaussian Inner Product 10 2.2. Weight Function 10 2.3. Analytic Continuation on the Regular Locus 20 2.4. Extension to Distr...
متن کاملRational Cherednik algebras
We survey a number of results about rational Cherednik algebra representation theory and its connection to symplectic singularities and their resolutions. Mathematics Subject Classification (2000). Primary 16G, 17B; Secondary 20C, 53D.
متن کاملIntroduction to Rational Cherednik Algebras
These are notes for a talk in the MIT-Northeastern Spring 2015 Graduate Representation Theory Seminar. The main source is [BR14].
متن کاملMicrolocalization of Rational Cherednik Algebras
We construct a microlocalization of the rational Cherednik algebras H of type Sn. This is achieved by a quantization of the Hilbert scheme Hilb C2 of n points in C2. We then prove the equivalence of the category of H -modules and that of modules over its microlocalization under certain conditions on the parameter.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Selecta Mathematica
سال: 2020
ISSN: 1022-1824,1420-9020
DOI: 10.1007/s00029-019-0533-4